Kalfree Only
LESSON 2
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. 3x – 2y + 2z – w = 2
| ||||||||||||||||||
Solve the system of equations using matrices. Use Gauss-Jordan elimination. 3x – 7 – 7z = 7
| ||||||||||||||||||
Find the product AB, if possible. A =
| ||||||||||||||||||
Use Cramer’s rule to solve the system. 2x + 4y – z = 32 x – 2y + 2z = -5 5x + y + z = 20
| ||||||||||||||||||
Find the products AB and BA to determine whether B is the multiplicative inverse of A. A = ![]() ![]()
| ||||||||||||||||||
Let A = ![]() ![]()
| ||||||||||||||||||
Find the inverse of the matrix, if possible. A =
| ||||||||||||||||||
Let B = [-1 3 6 -3]. Find -4B.
| ||||||||||||||||||
Evaluate the determinant.
| ||||||||||||||||||
Give the order of the matrix, and identify the given element of the matrix.
| ||||||||||||||||||
Find the product AB, if possible. A = ![]() ![]()
| ||||||||||||||||||
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. x + y + z = 9
| ||||||||||||||||||
Find the products AB and BA to determine whether B is the multiplicative inverse of A. A =
| ||||||||||||||||||
Solve the matrix equation for X. Let A =
|